Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 17(1): 219, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31801542

ABSTRACT

BACKGROUND: In November 2011, Malawi introduced the 13-valent pneumococcal conjugate vaccine (PCV13) into the routine infant schedule. Four to 7 years after introduction (2015-2018), rolling prospective nasopharyngeal carriage surveys were performed in the city of Blantyre. Carriage of Streptococcus pneumoniae vaccine serotypes (VT) remained higher than reported in high-income countries, and impact was asymmetric across age groups. METHODS: A dynamic transmission model was fit to survey data using a Bayesian Markov-chain Monte Carlo approach, to obtain insights into the determinants of post-PCV13 age-specific VT carriage. RESULTS: Accumulation of naturally acquired immunity with age and age-specific transmission potential were both key to reproducing the observed data. VT carriage reduction peaked sequentially over time, earlier in younger and later in older age groups. Estimated vaccine efficacy (protection against carriage) was 66.87% (95% CI 50.49-82.26%), similar to previous estimates. Ten-year projected vaccine impact (VT carriage reduction) among 0-9 years old was lower than observed in other settings, at 76.23% (CI 95% 68.02-81.96%), with sensitivity analyses demonstrating this to be mainly driven by a high local force of infection. CONCLUSIONS: There are both vaccine-related and host-related determinants of post-PCV13 pneumococcal VT transmission in Blantyre with vaccine impact determined by an age-specific, local force of infection. These findings are likely to be generalisable to other Sub-Saharan African countries in which PCV impact on carriage (and therefore herd protection) has been lower than desired, and have implications for the interpretation of post-PCV carriage studies and future vaccination programs.


Subject(s)
Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/therapeutic use , Streptococcus pneumoniae/drug effects , Aged , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Malawi , Male , Models, Theoretical , Pneumococcal Vaccines/pharmacology , Prospective Studies
2.
Philos Trans R Soc Lond B Biol Sci ; 374(1775): 20180274, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31056047

ABSTRACT

The high frequency of modern travel has led to concerns about a devastating pandemic since a lethal pathogen strain could spread worldwide quickly. Many historical pandemics have arisen following pathogen evolution to a more virulent form. However, some pathogen strains invoke immune responses that provide partial cross-immunity against infection with related strains. Here, we consider a mathematical model of successive outbreaks of two strains-a low virulence (LV) strain outbreak followed by a high virulence (HV) strain outbreak. Under these circumstances, we investigate the impacts of varying travel rates and cross-immunity on the probability that a major epidemic of the HV strain occurs, and the size of that outbreak. Frequent travel between subpopulations can lead to widespread immunity to the HV strain, driven by exposure to the LV strain. As a result, major epidemics of the HV strain are less likely, and can potentially be smaller, with more connected subpopulations. Cross-immunity may be a factor contributing to the absence of a global pandemic as severe as the 1918 influenza pandemic in the century since. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.


Subject(s)
Influenza, Human/immunology , Influenza, Human/transmission , Travel , Cross Protection , Disease Outbreaks , Global Health , Humans , Influenza A virus/immunology , Influenza A virus/pathogenicity , Influenza A virus/physiology , Influenza, Human/epidemiology , Models, Theoretical , Pandemics , Probability , Travel/statistics & numerical data , Virulence
3.
Semin Cell Dev Biol ; 92: 134-138, 2019 08.
Article in English | MEDLINE | ID: mdl-30965110

ABSTRACT

Can plants perceive sound? And what sounds are they likely to be "listening" to? The environment of plants includes many informative sounds, produced by biotic and abiotic sources. An ability to respond to these sounds could thus have a significant adaptive value for plants. We suggest the term phytoacoustics to describe the emerging field exploring sound emission and sound detection in plants, and review the recent studies published on these topics. We describe evidence of plant responses to sounds, varying from changes in gene expression to changes in pathogen resistance and nectar composition. The main focus of this review is the effect of airborne sounds on living plants. We also review work on sound emissions by plants, and plant morphological adaptations to sound. Finally, we discuss the ecological contexts where response to sound would be most advantageous to plants.


Subject(s)
Auditory Perception/genetics , Sound , Plants
4.
Science ; 361(6405): 894-899, 2018 08 31.
Article in English | MEDLINE | ID: mdl-30139911

ABSTRACT

The yellow fever virus (YFV) epidemic in Brazil is the largest in decades. The recent discovery of YFV in Brazilian Aedes species mosquitos highlights a need to monitor the risk of reestablishment of urban YFV transmission in the Americas. We use a suite of epidemiological, spatial, and genomic approaches to characterize YFV transmission. We show that the age and sex distribution of human cases is characteristic of sylvatic transmission. Analysis of YFV cases combined with genomes generated locally reveals an early phase of sylvatic YFV transmission and spatial expansion toward previously YFV-free areas, followed by a rise in viral spillover to humans in late 2016. Our results establish a framework for monitoring YFV transmission in real time that will contribute to a global strategy to eliminate future YFV epidemics.


Subject(s)
Disease Outbreaks/prevention & control , Epidemiological Monitoring , Genomics/methods , Yellow Fever/prevention & control , Yellow Fever/transmission , Yellow fever virus/isolation & purification , Aedes/virology , Age Factors , Animals , Brazil/epidemiology , Disease Outbreaks/statistics & numerical data , Evolution, Molecular , Humans , Phylogeny , Polymerase Chain Reaction , Risk , Sex Factors , Spatio-Temporal Analysis , Yellow Fever/epidemiology , Yellow Fever/virology , Yellow fever virus/classification , Yellow fever virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...